This document contains scheme of study and course breakups (only chemistry courses) of following semesters of BS program;

- 2nd semester (new scheme of study)
- 2nd semester for repeaters (old scheme of study)
- ➤ 4th semester
- ➢ 6th semester
- 8th semester (only organic section)

University of Poonch Rawalakot

Department of Chemistry

New Scheme of Studies of BS Program (2nd semester)

	GEN-3201	Expository Writing	3 (3-0)	General
	GEN-3202	Arabic/Kashmir Studies/Intro to History	2 (2-0)	General
	GEN-3203	Application of Information &	3 (2-1)	General
Semester 2		Communication Technologies		
	BOT-3204	Diversity of Plants	3 (2-1)	Interdisciplinary
	ZOO-3205	Animal Diversity-I	3 (2-1)	Interdisciplinary
	CHM-3206	Inorganic Chemistry	4 (3-1)	Major

l

:

(

2

1

•--

· .

Course Title	Inorganic Chemistry		
Course Code	CHM-3206		
Credit Hours	4(3-1)		
Learning objectives	To understand the basics of Inorganic chemistry, periodic table and different theories related to bonding. To also understand the concept of acid, base and their relative strength. Students will also be able to know about basic laboratory ethics and necessary precautionary measures required to carry out chemical reactions in laboratory		
Contents	Theory		
	Modern periodic table, similarities and differences among first row		
	elements, their diagonal and vertical relationship with other elements,		
	group trends and periodic properties in s, p, d and f block elements.		
	Inorganic chemistry, Types of bonding, VSEPR, VBT, MOT, Acid base		
	concept, Chemistry of p-block and d-block elements and introduction to		
	modern materials.		
	Practical		
	1) Awareness about the toxic nature of chemicals and their handling,		
	cleaning of glassware, safe laboratory		
	2) Analysis of four ions (two anions and two cations) from mixture		
	of salts		
	3) Determine the % age purity of NaCl (rock salt) by Mohr's method.		
	4) Determination of number of water molecules (x) in		
	CuSO4.XH2O iodometrically		
	5) Determination of amount/dm3 of FeSO4.7H2O with K2Cr2O7 by		
	both internal and external indicators.		
	6) Determination of % age of iron in Ferric alum (NH4)2SO4		
	Fe2(SO4)3.24H2O using K2Cr2O7 by both internal and external		
	indicators.		
	7) Standardization of EDTA solution by Magnesium Sulfate/Zinc		
	Sulfate solution by complexometry.		

	8) Find out the amount of Ca2+ in the given sample of marble (lime	
	stone) by complexometry.	
Suggested reading	1. Principles of Structure and Reactivity by J. E., Keiter, E. A. and Keiter	
	2. Comparative Inorganic Chemistry by Moody B.	
	3 .Basic Inorganic Chemistry by Cotton, F. A., Wilkinson, G. and Gaus, P.	
	L.,	
	4. Practical inorganic chemistry by Marr G. and Rockett B. W.	

Teacher Sig. Sadaf Jamshad

Programme	BS		
Semester	2 nd		
Course Title	Inorganic Chemis	try	
Course Code	CHM-3206	Credit Hours	4(3-1)
No of week	19		
Total no. of lectures			
Course Instructor	Sadaf Jamshad		

Detail of Lectures /Activity

Weeks		Lecture topic	Activity
Ist	Lecture	Modern periodic table and its properties. similarities and differences among first row elements, their diagonal and vertical relationship with other elements,	Lectures and practical
	Lecture	Group trends and periodic properties in s, p, d and f block elements.	
	Lecture	Atomic radii, ionic radii, ionization potentials, electron affinities, electronegativities and redox potential.	
	Practical	Introduction to lab equipment	
2 nd	Lecture	Nature and types of chemical bonding.	Lectures and practical
	Lecture	Theories related to shapes of molecules, VSPER	
	Lecture	VBT and hybridization	
	Practical	Awareness about the toxic nature of chemicals and their handling, cleaning of glassware, safe laboratory operations.	
3 rd	Lecture	Directed valence bond theory (hybridization) and their applications to homo and hetero di-atomic inorganic molecules and metallic bond.	Lectures and practical

	Lecture	Different Concepts of acids and	
	Lecture	bases and their properties	
	Lastana		-
	Lecture	pH, pKa, pKb and significance	
		of buffer solutions.	_
	practical	Determine the %age purity of	
		NaCl (rock salt) by Mohr's	
, th		method.	
4 th	Lecture	Law of mass action and its	Lectures and
		applications, precipitation and	practical
		solubility product and common	
		ion effect.	
	Lecture	co-precipitation and fractional	
		precipitation	
	Lecture	Theories of indicators.	
	Practical	Determination of number of	
		water molecules (x) in	
		CuSO4.XH2O iodometrically.	
5 th	Lecture	General properties of group iii	Lectures and
		elements, bonding in boranes	practical
		and its applications.	
	Lecture	Gradation of the characteristic	
		properties in group iv elements.	
	Lecture	comparison of carbon and	
		silicon, allotropic forms of	
		carbon Structure and industrial	
		applications of carbides,	
		silicates and silicones.	
	Practical	Detection of acidic radical in	-
		salt.	
6 th	Lecture	Gradation of the characteristic	Lectures and
		properties in group v elements.	practical
	Lecture	Oxides of nitrogen (NO and	1
		NO2) and their role in air	
		pollution, oxyacids (HNO2 and	
		HNO3) of nitrogen.	
	Lecture	Preparation of nitric acid and	1
		ortho phosphoric acid.	
		orano priospriorite della.	

	Practical	Detection of Basic salt radical in	
		salt.	
7 th	Lecture	Gradation of the characteristic	Lectures and
		properties in group vi elements.	practical
	Lecture	Thionic acids (H2SO3 and	
		H2SO4) and uses of hypo in	
		photography.	
	Lecture	Preparation of sulfuric acid	
	practical	Analysis of ions in salts.	
8 th	Lecture	MIDS	Lectures and MIDS
	Lecture	Gradation of the characteristic	
		properties in group vii elements	
		and peculiar behavior of	
		fluorine.	
	Lecture	Interhalogens and	
		pseudohalogens.	
	Practical	Determination of amount/dm3	
		of FeSO4.7H2O.	
9 th	Lecture	Discovery of noble gases,	Lectures AND
		structure and properties of	Practical
		xenon fluorides,	
	Lecture	Preparation, properties and uses	
		of xenon fluorides.	
	Lecture	Industrial uses of noble gases	
		and their compounds.	
	Practical	Indicators and its types.	
1 oth	.		
10 th	Lecture	Electronic configuration and	Lectures and
		general characteristics of d-	Practical
	T a strawa	block elements.	-
	Lecture	Werner's concept about d block	
		elements.	4
	Lecture	nomenclature of coordination	
		compounds.	
	Practical	Determination of %age of iron	
		in Ferric alum (NH4)2SO4	
		Fe2(SO4)3.24H2O using	
		K2Cr2O7.	

11 th	Lecture	Nomenclature of Complexes	Lectures and
	Lecture	Binding energy and oxidation	Practical
		number of d-block elements.	
	Lecture	Color of transition metals.	
	Practical	Structure of EDTA and its	
		preparation.	
12 th	Lecture	.Electronic configuration of d	Lectures and
		block elements.	practicals
	Lecture	Physical properties of d block	
		elements.	
	Lecture	Chemical properties of d-block	
		elements.	
	Practical	Standardization of EDTA	
		solution by Magnesium	
		Sulfate/Zinc Sulfate solution.	
13 th	Lecture	Typical and non-typical	Lectures and
		transition elements.	practical
	Lecture	Industrial applications of	
		transition elements.	
	Lecture	Abnormal oxidation state of	
		some elements.	
	Practical	Lab reports	
14 th	Lecture	Anomalous behavior of some	Lectures and
		elements in d series.	practicals
	Lecture	Properties of abnormal elements	
		in d series.	
	Lecture	Para magnetism and	-
		diamagnetism.	
	practical	Find out the amount of Ca2+ in	
		the given sample of marble	
		(lime stone).	
15 th	Lecture	Interstitial compound.	Lectures and
		_	practicals
	Lecture	Alloys and their properties.	
	Lecture	Applications of alloy.	4
			1

	practical	Lab report	
16th	Lecture	Steel and its types.	Lectures and
	Lecture	Corrosion and its types.	practicals
	Lecture	Electrochemical theory.	
	Practical	Lab Report	
17th	Lecture	Class presentations	Lectures and
	Lecture	Class presentations	practicals
	Lecture	Class presentations	
	Practical	Lab quiz	
18th	Lecture	Class presentations	Assignments and
	Lecture	Class presentations	ppts
	Lecture	Class presentations	
19th	Terminal exams		Terminal exams

Teacher Sig. Sadaf Jamshad

_

Chairman Sig. -----

Dean Sig -----

UNIVERSITY OF POONCH RAWALAKOT AZAD JAMMU AND KASHMIR

Course Breakup for BS (4-Years) program (2nd, 4th, 6th and 8th Semester) (Old Scheme of study)

Semester-II (For repeaters)

Course Code	Course Title	Credit hours
CHM-3201	Organic Chemistry	3(2-1)
ISL-3202	Islamic Studies / Ethics	2(2-0)
BOT-3203	Botany-II	3(2-1)
ZOO-3204	Principles of Animal Life-II	3(2-1)
STA-3205	Statistics	3(2-1)
ENG-3206	English-II	3(3-0)
	Total	18

Course Title	Organic chemistry	
Course Code	CHM -3201	
Credit Hours	3(2-1)	
Learning objectives	The overall goal has been to provide students with a solid, compact	
	introduction to the field of organic chemistry.	
Contents	Theory	
	Dipole moment; inductive and field effects; resonance; aromaticity;	
	tautomerism; hyperconjugation; hydrogen bonding; acids and bases;	
	factors affecting the strengths of acids and bases.	
	Hydrocarbons :Discussion on the preparation, properties and	
	reactions of alkanes, alkenes, alkynes and aromatics.	
	Oxygenated Hydrocarbons	
	Discussion on the preparation, properties and reactions of alcohols	
	(phenols), ethers, aldehydes, ketones, carboxylic acids and	
	derivatives.	
	Introductory Organic Spectroscopy	
	Introduction to IR, UV, 1H-NMR and Mass spectrometric methods,	
	and their usage for structure elucidation of some simple organic	
	compounds.	
	Practical	
	• Quantitative analysis of compounds with different functional	
	groups,	
	• Synthesis of organic compounds using a tool for	
	understanding techniques like reflux, distillation,	
	filtration, recrystallization and yield calculation, organic	
	synthesis may include	
	• preparation of benzanilide from benzoyl chloride	
	• preparation of succinic anhydride from succinice acid	
	• preparation of phthalimide from phthalic anhydride	
	• preparation of oximes and hydrazine from carbonyl	

	• preparation of ester from a carboxylic acid and alcohol
Suggested reading	1) Furniss, B. S, Hannaford, A. J Smith, P. W. G, Tatchell, A. R
	Vogel' S Textbook of practical organic chemistry, 5th ed., Longman,
	UK, (1989).
	2) Pavia, D. L., Kriz, G. S., Lanpman, G. M. and Engel, R. G., A
	Microscale Approach to organic laboratory techniques, 5th ed.,
	Brooks/Cole Cengage Learning, (2013).
	3) Mayo, D. W., Pike, R. M, and Forbes, D. C., Microscale Organic
	to Laboratory with Multistep
	and Multisacle Synthesis, 5th ed., John-wile & Sones, Inc., (2011).
	4) Gilbert, G. C. and Martin, S. F., Experimental organic chemistry:
	Aminiscale and Microscale
	approach 5th ed., Brooks/ Cole Cengage learning, (2010).
	5) Brown, W. H., Fotte, C. S., Lverson, B. L. and Anslyn, E. V.,
	organic chemistry, 6th ed., Brooks
	Cole Cengage learning, (2012).

Teacher Sig. Fazia Sher

Programme	BS		
Semester	2^{nd}		
Course Title	Organic Chemist	ry	
Course Code	CHM-3201	Credit Hours	3(2-1)
No of week	19		
Total no. of lectures			
Course Instructor	Fazia Sher		

Detail of Lectures /Activity

Weeks		Lecture topic	Activity
Ist	Lecture	Brief introduction. of Introduction to organic chemistry	Lectures and practical
	Lecture	Concept of inductive effect,+ve I,-ve I	
	Practical	Introduction to lab equipment	-
2^{nd}	Lecture	Concept of Dipol moment	Lectures and practical
	Lecture	Concept of Resonance ,resonance hybrid, Л δ Л resonance	
	Practical	Introduction of Quantitative analysis of different functional group	
3 rd	Lecture	Concept of hyperconjugation,Hyperconjugation in carbocation	Lectures and practical
	Lecture	Hyperconjugation in alkene, in free radical	
	Practical	Analysis of –COOH group	
4 th	Lecture	Tautomerism	Lectures and practical
	Lecture	Hydrogen Bonding	
	Practical	Analysis of ketone group	
5 th	Lecture	Aromaticity intro aromatic and non aromatic compounds,Huckle ruke	Lectures and practical
	Lecture	Acid base concept	1
	Practical	Analysis of Aldehyde group	
6 th	Lecture	Concept of weak acids and weak bases,conjugate acid conjugate base	Lectures and practical

	Lecture	Organic acids and bases	
	Practical	Analysis of Ether group	
7 th	Lecture	Scale of acidity and basicity	
	Lecture	Ka and pka values and strength of acid	
		and base, induction	
	Practical	Synthesis of soap(saponification)	
8^{th}	Lecture	Effect of resonance, Electrostatic effect	Lectures and MIDS
		on strength of acid and base	
	Lecture	Effect of H-bonding on strength of	
		acids and bases (MIDTERM)	
	Practical	Synthesis of phenol	
9 th	Lecture	Synthesis of Alkane by wurtz reaction	Lectures AND
	Lecture	Clemmnenson reduction	Practical
	Lecture		
	Practical	Synthesis of benzoic acid	-
	Flactical	Synthesis of benzoic acid	
10 th	Lastan	South asia of allows by	Testures and
10	Lecture	Synthesis of alkene by	Lectures and Practical
	T /	dehydration,elimination reaction	Practical
	Lecture	Witting reaction	
			-
	Practical	preparation of succinic anhydride from	
1.1 th	.	succinice acid	
11^{th}	Lecture	Synthesis of alkyne	Lectures and
	Lecture	Diels-alder reaction	Practical
	Practical	preparation of phthalimide from	
t e th		phthalic anhydride	
12 th	Lecture	Preparation of alcohol from aldehyde	Lectures and
	_	and ketones	practicals
	Lecture	Preparation of alcohol from Grignard	
		reagent	-
	Practical	preparation of benzanilide from	
4		benzoyl chloride	
13 th	Lecture	Introduction of phenol Preparation of	Lectures and
		phenol by cumene process	practical
	Lecture	Dow process for synthesis of phenol,	
		Rasching process	
	Practical	preparation of oximes and hydrazine	
		from carbonyl	

14 th	Lecture	Introduction of ether Preparation of ether by williamson synthesis	Lectures and practicals
	Lecture	Preparation of aldehyde	
	Practical	preparation of ester from a carboxylic acid and alcohol	
15 th	Lecture	Wolff-kishner reduction	Lectures and practicals
	Lecture	Jones oxidation	-
	Practical	Determination of actual yield and comparision with theoretical yield.	_
16th	Lecture	Synthesis of carboxylic acid	Lectures and
	Lecture	Koch reaction, haloform reaction	practicals
	Practical	Analysis of amine group	
17th	Lecture	Introduction of spectroscopy,HNMR	Lectures and
	Lecture	Infrared spectroscopy,Mass spectroscopy	practicals
	Practical	Lab quiz +Lab reports	
18th	Lecture	Class presentations	Assignments and
	Lecture	Class presentations	ppts
19th	Terminal exams		Terminal exams

Teacher Sig. Fazia Sher

Semester-IV

Course Code	Course Title	Credit hours
CHM-4401	Inorganic Chemistry	3(2-1)
CHM-4402	Biochemistry	3(2-1)
BOT-4403	Botany-IV	3(2-1)
ZOO-4404	Animal Diversity-II	3(2-1)
CHM-4405	Applied Chemistry	2(2-0)
ARB-4406	Arabic	3(3-0)
	Total	18

Course Title	Inorganic Chemistry		
Course Code	CHM 4401		
Credit Hours	3(2-1)		
Learning objectives	To understand the basics of Inorganic chemistry, periodic table and		
	different theories related to bonding		
Contents	Theory		
	Inorganic chemistry, Types of bonding, VSEPR, VBT, MOT, Acid		
	base concept, Chemistry of p-block and d-block elements and		
	introduction to modern materials.		
	Practical		
	1) Awareness about the toxic nature of chemicals and their		
	handling, cleaning of glassware, safe laboratory		
	2) Analysis of four ions (two anions and two cations) from mixture of		
	salts		
	3) Acid-Base Titrations		
	4) Redox Titrations		
	5) Complexometric Tirations		
	6) Preparation of Ferrous sulphate		
	7) Preparation of Ferric alum		
	8) Preparation of Barium sulphate		
Suggested reading	${f 1.}$ Principles of Structure and Reactivity by J. E., Keiter, E. A. and Keiter		
	2. Comparative Inorganic Chemistry by Moody B.		
	3.Basic Inorganic Chemistry by Cotton, F. A., Wilkinson, G. and Gaus,		
	P. L.,		

Teacher Sig. Sadaf Jamshad

Chairman Sig. -----

Dean Sig -----

Programme	BS		
Semester	4 th		
Course Title	Inorganic Chemi	stry	
Course Code	CHM-4401	Credit Hours	3(2-1)
No of week	19		
Total no. of lectures			
Course Instructor	Sadaf Jamshad		

Detail of Lectures /Activity

Weeks		Lecture topic	Activity
Ist	Lecture	Attainment of a stable configuration and types of bonds.	Lectures and practical
	Lecture	Oxidation number and formal charge	
	Practical	Introduction to lab equipment	
2 nd	Lecture	VBT and Hybridization	Lectures and practical
	Lecture	Theories related to shapes of molecules, VSPER	
	Practical	Acid-base Titration	
3 rd	Lecture	Calculation of oxidation number and Formal charge	Lectures and practical
	Lecture	Different Concepts of acids and bases and their properties	
	practical	Redox Titration	
4 th	Lecture	pH, pKa, pKb and significance of buffer solutions	Lectures and practical
	Lecture	Theory of Indicators, solubility, solubility product, common ion effect and their applications	
	Practical	Complexometric Titrations	

5 th	Lecture	General properties of group iii	Lectures and
		elements, bonding in boranes	practical
		and its applications	
	Lecture	Gradation of the characteristic	
		properties in group iv elements	
		and Structural aspects of ortho and	
		metasilicates and their industrial	
		applications.	
	Practical	Detection of acidic radical in	
		salt.	
6 th	Lecture	Gradation of the characteristic	Lectures and
		properties in group v elements.	practical
	Lecture	Oxides of nitrogen (NO and NO2) and their role in air pollution,	
		oxyacids (HNO2 and HNO3) of	
		nitrogen.	
	Practical	Detection of Basic salt radical in	
		salt.	
7 th	Lecture	Gradation of the characteristic	Lectures and
/	Lecture	properties in group vi elements.	practical
	Lecture	Thionic acids (H2SO3 and H2SO4)	practical
		and uses of hypo in photography.	
	practical	Analysis of ions in salts.	
8 th	Lecture	MIDS	Lectures and MIDS
	Lecture	Gradation of the characteristic	
		properties in group vii elements	
		and peculiar behavior of fluorine	
		and Interhalogens, pseudohalogens.	
	Practical	Lab Report	
9 th	_	Preparation of oxyacids of	Lasturas AND
9	Lecture	halogens (HCIO3 and HCIO4) and	Lectures AND
		their uses.	Practical
	Lecture	Preparation, properties and uses of	
		xenon fluorides	
	Practical	Preparation of Ferrous sulphate	
	Tuetteur		
10 th	Lecture	Electronic configuration and	Lectures and
10		general characteristics of d-block	Practical
		elements.	
	Lecture	Werner's concept and	
		nomenclature of coordination	
		compounds.	

	Practical	Preparation of Ferric alum	
11 th	Lecture	Nomenclature of Complxes	Lectures and
	Lecture	Binding energy and oxidation number of d-block elements and d-d transition.	Practical
	Practical	Preparation of Barium sulphate	
12 th	Lecture	Liquid crystals and its properties.	Lectures and
	Lecture	Engineering ceramics and its properties.	practicals
	Practical	Synthesis of compounds	
13 th	Lecture	Fiber glass	Lectures and
	Lecture	Properties of Fiber glass	practical
	Practical	Lab reports	
14 th	Lecture	Anomalous behavior of some elements.	Lectures and practicals
	Lecture	Properties of abnormal elements.	
	practical	Structure of different indicators	
15 th	Lecture	Physical and chemical property of thin film.	Lectures and practicals
	Lecture	Biological applications of liquid crystal.	
	practical	Lab report	
16th	Lecture	Thermal conductivity of Modern materials	Lectures and practicals
	Lecture	Chemical properties of modern materials	
	Practical	Lab Report	
17th	Lecture	Class presentations	Lectures and
	Lecture	Class presentations	practicals
	Practical	Lab quiz	
18th	Lecture	Class presentations	Assignments and
	Lecture	Class presentations	ppts
19th	Terminal exams		Terminal exams

Teacher Sig. Sadaf Jamshad

_

Course Title	Biochemistry	
Course Code	CHM 4402	
Credit Hours	3(2-1)	
Learning	□ To acquaint students with the chemistry and biology of	
objectives	macromolecules.	
	□ Students able to know about reason of different biomolecules and their role in body	
Contents	Theory	
	Carbohydrates: Nomenclature, steroisomerism, epimerism,.	
	Reactions of monosaccharide, reactions of sugars due to hydroxyl	
	group. Disaccharides, sucrose, lactose, maltose, cellulose, etc.	
	Polysaccharides: starch, glycogen, cellulose, inuline, dextrin, chitin,	
	Agar Mucopoly saccharides like hyaluronic acid, heparin,	
	chondroitin sulphate.	
	Lipids: fatty acids, classification of fatty acids.bile acids and bile	
	salts, triglycerides, hydrolysis of triglycerides, sponification,	
	characterization of fats, waxes, behavior of lipids in water. Micelle,	
	chylomicron, VLDL, LDL, HDL. Plasma Lipoproteins.	
	Protiens: Amino acids found in proteins, amino acid used in protein	
	synthesis. Non-protein amino acids, isoelectric point. Classification	
	of proteins, protein sequencing, different levels of protein structure.	
	Nucleic acids: chemical composition, Bases present in nucleic	
	acids: purines and pyrimidines, nucleotids and nucleosides, structure	
	of DNA, base composition of DNA, types of RNA, nucleases.	
	Practicals	
	1. Detection of carbohydrates, monosaccharides and polysaccharides.	
	2. Detection of lipids on the basis of physical and chemical properties.	
	3. Qualitative tests for proteins of amins acids.	

	4. Preparation buffers at different pHs.
	5. Precipitation.
Suggested reading	Books Recommended (Reference Material for Theory)
	1. D. Voet, J. G. Voet, C. W. Pratt, "Biochemistry", John Wiley & Sons, New York, 1999.
	2. A. L. Lehninger, D. L. Nelson, M. M. Cox, "Principles of Biochemistry", 3rd Ed., Worth Publishers, New York, 2000.
	3. G. Zubay, "Biochemistry", W. C. B. Publishers, Toronto, 1998.
	4. L. Stryer, "Biochemistry" 5th Ed., W. H. Freeman & Co., 2002.
	5. R. K. Murray, D. K. Granner, P. A. Mayes, "Harper's Biochemistry", Rodwell, 2000.
	6. Guyton and Hall, "Text Book of Biochemistry", Barcourt Brace Asia, 1998.
	7. D. E. Schumm, "Essential of Biochemistry", Medical Edition series New York, 1999.
	8. M. Ahmed, "Essentials of Medical Biochemistry", Merit publishers Faisalabad, 1982.
	9. P. C. Champe, A. R. Harvey, "Biochemistry", Lippincott-Raven Publishers, 1994.
	10. G. L. Zubay, "Principles of Biochemisty", Mc Millan Publishing Co., 1995.
	11. L. Stryer, "Biochemistry", W. H. Freeman & Co., N. Y., 1995
	Books Recommended (Reference Material for Practicals)
	1. D. T. Plummer, "An Introduction to Practical Biochemistry", Tata Mc Graw-Hill Publishing company Ltd. New Delhi, 1988.
	2. G. Rajagopal, S. Ramakrishnan, "Practical Biochemistry for Medical Students", Orient Longman Ltd., Hyderabad, 1983.

	3. S. P. Singh, "Manual of Biochemistry", CBS Publishers, New
	Delhi, 1988.
Teacher Sig. Summ	yia Khalid Chairman Sig

Details of Lectures/Activity

Weeks	Lecture Number	Course content	Activity
1 st	Lecture	Nomenclature, steroisomerism, epimerism,	Lectures and
	Lecture	nomenclature, steroisomerism, epimerism,	Practical

	Practical	Detection of carbohydrates, monosaccharides and	
		polysaccharides.	
2 nd	Lecture	Reactions of monosaccharide	Lectures and
	Lecture	Reactions of sugars due to hydroxyl group.	Practical
	Practical	Detection of carbohydrates, monosaccharides and polysaccharides.	
3 rd	Lecture	Disaccharides, sucrose, lactose, maltose, cellulose, etc.	Lectures and
5	Lecture	Disaccharides, sucrose, lactose, maltose, cellulose, etc.	Practical
	Practical	Detection of lipids on the basis of physical and chemical properties.	
4 th	Lecture	Polysaccharides: starch, glycogen, cellulose, inuline, dextrin, chitin,	Lectures and Practical
	Lecture	Polysaccharides: starch, glycogen, cellulose, inuline, dextrin, chitin,	
Practical		Detection of lipids on the basis of physical and chemical properties.	
5 th Lecture		Agar Mucopoly saccharides like hyaluronic acid, heparin, chondroitin sulphate.	Lectures and Practical
	Lecture	Agar Mucopoly saccharides like hyaluronic acid, heparin, chondroitin sulphate.	
	Practical	Qualitative tests for proteins of amins acids.	
6 th Lecture		Agar Mucopoly saccharides like hyaluronic acid, heparin, chondroitin sulphate.	Lectures and Practical
	Lecture	fatty acids	-
	Practical	Qualitative tests for proteins of amins acids.	-
7 th	Lecture	fatty acids,	Lectures and
	Lecture	QUIZ	Practical
	Practical	Qualitative tests for proteins of amins acids.	QUIZ
8 th	Lecture	Classification of fatty acids.	
-	Lecture	Classification of fatty acids.(Midterm)	Lectures/MIDS
	Practical	Collection of Lab report	

Weeks		Course content	Activity
9 th	Lecture	Bile acids and bile salts,	Lectures and
	Lecture	triglycerides,	Practical
	Practical	Preparation of acidic buffers at different pHs.	
10 th	Lecture	hydrolysis of triglycerides	Lectures and
-	Lecture	saponification, characterization of fats,	Practical
	Practical	Preparation of acidic buffers at different pHs.	
11 th	Lecture	Waxes, behavior of lipids in water. Micelle,	Lectures and
	Lecture	Chylomicron, VLDL, LDL, HDL. Plasma Lipoproteins	Practical
	Practical	Collection of LAB reports	
12 th	Lecture	Amino acids found in proteins	Lectures and
	Lecture	Amino acid used in protein synthesis	Practical
	Practical	Preparation of basic buffers at different pHs.	
13 th	Lecture	Non-protein amino acids, isoelectric point	Lectures and
	Lecture	QUIZ	Practical
	Practical	Preparation of basic buffers at different pHs.	
14 th	Lecture	protein sequencing	Lectures and
	Lecture	protein sequencing	Practical
	Practical	Precipitation.	
15 th	Lecture	Classification of proteins,	Lectures and
	Lecture	different levels of protein structure	Practical
	Practical	Precipitation.	
16 th	Lecture	chemical composition,	Lectures and
	Lecture	Bases present in nucleic acids: purines and pyrimidines	Practical
	Practical	Precipitation.	
17 th	Lecture	nucleotids and nucleosides,	Lectures and
	Lecture	Structure of DNA	Practical
	Practical	Collection of Lab reports	
18 th	Lecture	Base composition of DNA.	Presentations
	Lecture	types of RNA, nucleases	and Assignmentd
	Practical	LAB QUIZ	
19 th	Terminal E	XAMS	Terminals

Teacher Sig. Summyia Khalid

Course Title	Applied Chemistry	
Course Code	CHM 4405	
Credit Hours	2(2-0)	
Learning objectives	To understand the basics of basic principles and parameters for	
	industrial plant unit operations and unit processes.	
Contents	Theory	
	Applied chemistry, Flow sheet diagrams and unit operations	
	and unit processes of different acids and base, cement	
	industry, petroleum, textile, polymer and fuel industries and	
	their applications.	
Suggested reading	1. Applied chemistryy by Oleg Roussak, H. D. and Gesser	
	2. Applied and Inorganic Chemistry by Haq Nawaz	

Teacher Sig. Sadaf Jamshad

Programme	BS		
Semester	4 th		
Course Title	Applied Chemistr	ſy	
Course Code	CHM-4405	Credit Hours	2(2-0)
No of week	19		
Total no. of lectures			
Course Instructor	Sadaf Jamshad		

Detail of Lectures /Activity

Weeks		Lecture topic	Activity
Ist	Lecture	Basic principles for industrial	Lectures
		plant unit operations and unit	
		processes.	
	Lecture	Basic parameters for industrial	
		plant unit operations and unit	
		processes.	
2 nd	Lecture	Raw materials. Unit processes	Lectures
		and unit operation of sulphuric	
		acid.	
	Lecture	Flow sheet of sulphuric acid.	
3 rd	Lecture	Raw materials. Unit processes	Lectures
		and unit operation of Nitric	
		acid.	
	Lecture	Flow sheet of nitric acid.	
4 th	Lecture	Raw materials. Unit processes	Lectures
		and unit operation of	
		Hydrochloric acid.	
	Lecture	Flow sheet of hydrochloric	
		acid.	
5 th	Lecture	Raw materials. Unit processes	Lectures
		and unit operation of oxalic	
		acid.	
	Lecture	Flow sheet of Oxalic acid.	
6 th	Lecture	Raw materials. Unit processes	Lectures
		and unit operation of Formic	
		acid.	
	Lecture	Flow sheet of Formic acid.	1

7 th	Lecture	Raw materials. Unit processes and unit operation of Caustic soda.	Lectures
	Lecture	Flow sheet of Caustic soda.	
8 th	Lecture	MIDS	Lectures and MIDS
	Lecture	. Raw materials. Unit processes and unit operation of Washing soda	
9 th	Lecture	Flow sheet of Washing soda	Lectures
	Lecture	Cement industry.	
10 th	Lecture	Raw materials. Unit processes and unit operation of cement industry,	Lectures
	Lecture	Applications of cement industry.	
11 th	Lecture	Petroleum industry.	Lectures
	Lecture	Raw materials. Unit processes and unit operation of Petroleum industry.	
12 th	Lecture	Applications of Petroleum industry.	Lectures
	Lecture	Textile industry.	
13 th	Lecture	Raw materials. Unit processes and unit operation of Textile industry.	Lectures
	Lecture	Applications of Textile industry.	-
14 th	Lecture	Polymer industry.	Lectures
	Lecture	Raw materials. Unit processes and unit operation of Polymer industry.	
15 th	Lecture	Applications of Polymer industry.	Lectures
	Lecture	Fuel industry.	

16th	Lecture	Raw materials. Unit processes	Lectures
		and unit operation of Fuel	
		industry.	
	Lecture	Applications of Fuel industry.	
17th	Lecture	Class presentations	Lectures
	Lecture	Class presentations	
18th	Lecture	Class presentations	Assignments and
	Lecture	Class presentations	ppts
19th	Terminal exams		Terminal exams

Teacher Sig. Sadaf Jamshad

Semester-VI

Course Code	Course Title	Credit hours
CHM-5601	Physical Chemistry-II	4(3-1)
CHM-5602	Organic Chemistry-II	4(3-1)
CHM-5603	Inorganic Chemistry-II	4(3-1)
CHM-5604	Bio Chemistry-II	4(3-1)
	Total	16

Course Title	Physical Chemistry II
Course Code	CHM 5601
Credit Hours	4(3-1)
Learning	The course introduces the basic concepts of Quantum Mechanics,
objectives	Electrochemistry and Nuclear chemistry and their applications.
Contents	Theory
	1. Quantum mechanics
	Black Body radiations, photoelectric effect, Compton effect, postulates of quantum mechanics, concept of wave functions, operators, eigen and non-eigen functions, derivation of Schrodinger wave equation for one dimension and three dimensions, concept of degeneracy, orthogonal and normalized set of functions, tunneling effect, Pauli exclusion principle.
	2. Electrochemistry
	Conductance, resistance, types of electrolytic dissociation, weak and strong electrolytes, activity, activity coefficients and their determination by emf method, Debye-Huckel limiting law, Huckel and Onsager equation on conductance, concept of electrode potential, standard electrode potential, development of cells, calculation of cell constant, change in free energy and entropy of electrochemical cells, electrochemical basis for corrosion.
	3-Nuclear Chemistry
	Atomic nucleus, nuclides, nuclear stability, modes of decay, nuclear energetics, , fusion and fission, non-spontaneous nuclear processes, nuclear reactors, beta decay systematic, nuclear spins
	Practicals
	Potentiometry
	1. Determine the pH of a given solution by buffer solution method.
	2. To find out the strength of HCl solution by titrating it against NaOH solution using pH meter.
	3. Determine the dissociation constant of weak acid using potentiometer.

	Conductometry
	1. Conductance measurements
	. 2. Find out the strength of HCl solution by titrating it against NaOH solution conductometrically.
Suggested reading	Books Recommended (Reference Material for Theory)
	1. Alberty, R.A and Silbey, R.J., "Physical Chemistry" John Wiley, New York, 1995.
	2. Atkins, P.W, "Physical Chemistry" 5 th Ed., W.H. Freeman & Company, New York, 1994.
	3. Barrow, G. M., "Physical chemistry" McGraw Hill, Singapore, 1988.
	4. Levine, I.N., "Quantum Chemistry" 4th Ed., Prentice Hall, New Jersey, and Prentice Hall India 1991.
	5. Hanna, M.W., "Quantum Mechanics in Chemistry" 3 rd Ed., The Benjamin/Cummings Co., California, 1981. 13
	6. Lowe, J.P., "Quantum Chemistry" 2nd Ed. Academic Press. Boston.2 New York, 1993.
	7. Bockris, J.M. and Reddy, A. K. N., "Modern Electrochemistry" Plenum Press, New York, 1970.
	8. Bard. A. and Faulkner, L.R., "Electrochemical Methods Fundamentals and Applications"
	Books Recommended (Reference Material for Practicals)
	1. Daniel, F. and et al, "Experimental physical chemistry" New York McGraw Hill, New York
	2. Findlay, A.and. Kitchner, J.A., "Practical physical Chemistry" Longman, Green and Co.,1976.
	3. Shoemaker, D.P. and Garland, C., "Experiments in physical chemistry" McGraw Hill, New York. Courses for Semester-VI
Taaahan Sia Mahn	

Details of Lectures/Activity

Weeks	Lecture Number	Course content	Activity
1 st	Lecture	Introduction to Quantum mechanics	Lectures and Practical
	Lecture	Differences between classical and quantum mechanics	
	Lecture	Importance and need of quantum mechanics	
	Practical	Introduction to glassware and lab safety measures	
2 nd 3 rd	Lecture	Early experiments in Q. Mechanics Black body radiations	Lectures and Practical Lectures and Practical
	Lecture	Photoelectric effect	
	Lecture	Compton effect	
	Practical	Solutions making	
	-		
	Lecture	Introduction to Wave function Few restrictions on wave function	
	Lecture		
	Lecture	Orthogonal and orthonormal wave function	
	Practical	Use of PH meter	
4 th	Lecture	Few numericals on wave function	Lectures and Practical
	Lecture	Postulates of Quantum mechanics	
	Lecture	Introduction to Operators,	
	Practical	Making acidic buffers	
5 th	Lecture	knowledge of different operators eg laplacian, hermition and different operators of P.E, momentum etc	Lectures and Practical
	Lecture	Characteristics of operators and few numericals	
	Lecture	Eigen and non eigen functions	
	Practical	Making basic buffers	
6 th	Lecture	Examples of eigen and non eigen functions	Lectures and Practical
	Lecture	Schrodinger wave function	
	Lecture	Derivation of Schrodinger wave function for 1 D and 3D states	
	Practical	Presentations by students regarding Normal and Molar solutions	
7 th	Lecture	Concept of degeneracy	Lectures and Practical QUIZ
	Lecture	Paulis exclusion principle Tunneling effect	
	Lecture	QUIZ	
	Practical	Determine the strength of HCl by titrating against NaOH using Ph meter	
8 th	Lecture	Introduction to electrochemistry	
	Lecture	Applications of Electrochemistry in daily life	Lectures/MIDS
	Lecture	Ohm,slaw Conductance ,resistance and their numericals	
	Practical	Collection of Lab report	

Weeks		Course content	Activity
9 th	Lecture	Types of electrolytic dissociation	Lectures and Practical
	Lecture	Strong and weak electrolytes	
	Lecture	Activity and activity cofficient	
	Practical	Determine PH of given solutions by buffer solution	
		method	
10 th	Lecture	Determination of activity coefficient by EMF method	Lectures and Practical
	Lecture	Numerical problems	
	Lecture	Huckel and Onsager equation on conductance	
	Practical	Determine the dissociation constant of weak acid using	
		Potentiometer/ Ph meter	
11 th	Lecture	Huckel and onsager equation on conductance	Lectures and Practical
	Lecture	Debye Huckel Limiting Law	
	Lecture	Electrochemical Cells and their types	
	Practical	Collection of LAB reports	
12 th	Lecture	Development of cells	Lectures and Practical
	Lecture	Calculation of cell constant	
	Lecture	Concept of electrode potential and standard electrode	
		potential	
	Practical	Determination of cell constant in lab	
13 th	Lecture	Change in free energy and entropy of an	Lectures and
15		electrochemical cell	Practical
	Lecture	Nernst equation and its numericals	
	Lecture	QUIZ	
	Practical	Conductance measurements of few strong electroltyess	
14 th	Lecture	Electrochemical basis for corrision	Lectures and Practical
	Lecture	Numerical problems on cell constant, cell potential	
	Lecture	Introduction to Nuclear Chemistry	
	Practical	Conductance measurements of few weak electroltyes	
15 th	Lecture	Atomic Nucleus ,Nucleides	Lectures and Practical
	Lecture	Modes of decay of Nucleus	
	Lecture	Nuclear energetics,	
	Practical	Determine the strength of HCl by titrating against	
		NaOH using Conductometer	
16 th	Lecture	Nuclear Fission	Lectures and Practical
	Lecture	Nuclear Fusion	
	Lecture	Non Spontaneous Nuclear processes	
	Practical	Presentations in lab regarding saturated unsaturated	
		solutions	
17 th	Lecture	Nuclear Reactor	Lectures and Practical
	Lecture	Beta decay systematic	
	Lecture	Nuclear Spins	
	Practical	Collection of Lab reports	
18 th	Lecture	Presentations by students	Presentations
	Lecture	Presentations by students	and Assignmentd
	Lecture	Presentations by students	
	Practical	LAB QUIZ	

Teacher Sig. Mehrosh Islam

Organic chemistry-II
CHM -5602
4(3-1)
The aim of the course is to make students familiar with the concepts
and applications in two important topics in advanced organic
chemistry, namely concerted organic reactions and spectroscopy.
Theory
Chemistry of carbonyl compounds with special reference to
condensation reactions, Active methylene compounds, Active
methylene compounds. Alkylation, Arylation of active methylene
compounds. Acid and base catalysed aldol condensation.Conditions,
mechanism and synthetic applications of the following
reactions:Claisen- Schmidt reaction, Claisen reaction, knoevenagel
reaction, Perkin reaction, Reformatsky
reaction, Mannich reaction, Stobbe's condensation, and Wittig
reaction.Basic spectroscopy: introduction; detailed account of
ultraviolet and infrared spectroscopy.
Practical
1) Separation of three component mixtures by chromatographic
(CC, TLC) methods.(10 mixtures)
2) Simple preparations: at least four by the choice of teacher
concerned.
1. Handrickson, J. B., Cram, D.J. and Hammond, G.S., Organic
Chemsitry, 3rd Ed, MacGraw-Hill, Tokyo, 1970.
2. Morrison, R.T., and Boyde, R.N., Organic Chemistry, 6th Ed.
Prentice Hall, Englewood Cliffs, New Jersey, 1992.
3. March, J., Advanced Organic Chemistry, 4th Ed., John Wiley &
Sons, New York, 1992.
4. Finar, I.L., Organic Chemistry, 6th Ed., Vol. 1 & 2, Longman,
London, 1973.

5. Brown, D.W., Floyed, A. J. and Sainsbury, M., Organic
Spectroscopy, J. Wiley and sons, Chichester, 1998.
6. Williams, D.H. & Fleming, I., Spectroscopic Methods in Organic
Chemistry, 4th Ed., McGraw-Hill Book Co., London, 1987.

Teacher Sig. Amina Khurshid

Chairman Sig. -----

•

Programme	BS		
Semester	6^{th}		
Course Title	Organic Chemistr	y-II	
Course Code	CHM-5602	Credit Hours	4(3-1)
No of week	19		
Total no. of lectures			
Course Instructor	Amina Khurshid		

Detail of Lectures /Activity

Weeks		Lecture topic	Activity
Ist	Lecture	Brief introduction. of carbonyl	Lectures and
		compounds, Condensation	practical
		reactions of carbonyl	
		compounds.	
	Lecture	General reaction of aldehyde	
		and ketones	
	Lecture	Condensation reaction of	

		carbonyl compounds	
	Practical	Introduction to lab equipment	-
2 nd	Lecture	Cannizaro's reaction	Lectures and practical
	Lecture	Introduction of active methylene compounds.	
	Lecture	Synthetic application of active methylene compounds	
	Practical	Introduction of chromatograpy	
3 rd	Lecture	Reactivity of active methylene compounds.	Lectures and practical
	Lecture	Synthesis of adipic acid by using acetoacetic ester	
	Lecture	iodoform test (Active methylene group)	
	Practical	Detection of pigments by using thin layer chromatography	
4 th	Lecture	Synthesis of crotonic acid by using acetoacetic ester	Lectures and practical
	Lecture	synthesis of butanoic acid by using acetoacetic ester	
	Lectrue	Synthesis of glutaric acid by using acetoacetic ester	
	Practical	Preparations of various solvent systems.	
5 th	Lecture	Alkylation of active methylene compounds	Lectures and practical
	Lecture	Alkylation of active methylene compounds	
	Lecture	Synthesis of succinic acid by using acetoacetic ester	
	Practical	Determinations of pigments by TLC.	
6 th	Lecture	Synthesis of active methylene compound (ethyl acetoacetate)	Lectures and practical
	Lecture	Keto-enol tautomerism in active methylene compounds	
	Lecture	Synthesis of succinic acid using	

		diethyl malonate	
	Practical	Determinations of pigments by TLC.	
7 th	Lecture	Acidity of methylene group (salt formation)	
	Lecture	Claisen_shimidtd condensation reaction	Lectures and practical
	Lecture	Claisen_shimidtd condensation reaction	Practical
	practical	Introduction of CC.	
8 th	Lecture	Claisen_shimidtd condensation reaction	Lectures and MIDS
	Lecture	Synthetic application of of Claisen_shimidtd condensation	
	Lecture	Arylation of active methylene compound	
	Practical	Separation of compounds by using Column chromatography.	
9 th	Lecture	Knoevenagel reaction	Lectures AND
	Lecture	Synthesis of alkylacetic acid by using ethylacetoacetate	Practical
	Lecture	Ketonic hydrolysis of ethylacetoacetate	
	Practical	Separation of compounds by using Column chromatography.	
10^{th}	Lecture	Acid hydrolysis of active methylene compound	Lectures and Practical
	Lecture	Stobbe's condensation	
	Lecture	Mannich reaction	
	Practical	Introduction of synthesis of compounds	
11^{th}	Lecture	Wittig reaction	Lectures and
	Lecture	Basic spectroscopy: introduction,	Practical
	Lecture	principle of UV(beer Lambert	1

		law),,	
	Practical	Synthesis of methyl orange	
12^{th}	Lecture	Instrumentation of UV visible	Lectures and
		spectroscopy	practicals
	Lecture	Study of Chromophores and	
		axochrome groups	
	Lecture	Bathochromic and	
		hypsochromic effect	
	Practical	Introduction of nitration	
13 th	Lecture	Concept of hyperchromic and	Lectures and
		hypochromic effect	practical
	Lecture	Effect of conjugation	
	Lecture	Description of Homoannular	
		and Hetroannular	
	Practical	Preparation of nitration	
14^{th}	Lecture	Study of terms such as	Lectures and
		Dienes, Exocyclic and exocyclic	practicals
	Lecture	Woodward fisher rule and	
		examples	_
	Lecture	Woodward fisher rule and	
		examples	_
	practical	Calculations of RF values of	
th		different samples	
15 th	Lecture	Spectra elucidation and Lamda	Lectures and
		max	practicals
	Lecture	Infrared spectroscopy:	
		introduction principle	_
	Lecture	introduction of IR Spectroscopy	
	practical	Determination of actual yield	_
		and comparision with	
		theoretical yield.	
16th	Lecture	Instrumentation of IR	Lectures and
		Spectroscopy	practicals
	Lecture	Instrumentation of IR	1
		Spectroscopy	
	Lecture	Introduction of vibrations	1
	Practical	Seperation of lead cadmium	1
		mixture by paper	

		chromatography	
17th	Lecture	How we can find out degree of	Lectures and
		freedom for linear and non-	practicals
		linear compounds	
	Lecture	Examples of linear compounds	
	Lecture	Examples of non linear	
		compounds	
	Practical	Lab quiz +Lab reports	
18th	Lecture	Class presentations	Assignments and
	Lecture	Class presentations	ppts
	Lecture	Class presentations]
19th	Terminal exams		Terminal exams

Teacher Sig. Amina Khurshid

Chairman Sig. -----

UNIVERSITY OF POONCH RAWALAKOT AJK

Faculty of Basic & Applied Sciences

Session2023

Session	2023
Subject: coordination chemistry	Course Code: CHM-5603
Course Structure: Lectures: 3 Lab:1	Credit Hours: 4
Prerequisites: Inorganic Chemistry	Course Instructor: Farakh
	Subject: coordination chemistry Course Structure: Lectures: 3 Lab:1

Course Outline:

Electronic configuration and oxidation states of transition metals, Werner's theory for coordination complexes and its comparison with Blomstrand-Jorgensen Chain Theory, ligands, nomenclature of coordination complexes. Bonding Theories (VBT, MOT and CFT) for explanation of coordination bonding. Common geometries of coordination complexes.

Chelates and chelate effect. Distortion in Structures. The spectro-chemical series, colour of metal complexes.

Magnetic properties (diamagnetism, paramagnetism), Iso- merism, Stereo chemistry.

2. Pi-Acceptor Ligands

Introduction Mono-, bi- and poly nuclear transition metal carbonyls, bonding nature, general characteristics and reactions. The 18-electron rule as applied to metal carbonyls, Rationalization of molecular structures, Equation of Structures based on spectroscopic evidence.

Reference Material:

• Cotton, F.A. and Wilkinson G., "*Advanced Inorganic Chemistry*", 5th Ed, John Wiley & Sons, New York, 1988.

• James Huheey, E., "Inorganic Chemistry, Principles of Structure and Reactivity", 3rd. Ed.,

Cambridge, Harper International, London, 1983.

• Basolo, F. and Johnson, R., "Coordination Chemistry", W.A. Benjamin, Inc., 1964.

• Zafar Iqbal M., "Pi-Acceptor Ligands", UGC Islamabad, 1982.

• Kent Murmann R., "Inorganic complex compounds", Reinhold publishing corporation, NewYork, 1964.

• Kamlesh Bansal, "Coordination Chemistry", Campus Books International, New Dehli, 2003.

Course Objectives:

This course introduces the concept of Coordination chemistry, Transtation metals. Further, it Focuses on the bonding, Structure and geometry of coordination complexes. It also serves to Familiarize the student with the different bonding theories of coordination bond.

Schedule for Quizzes and Final Exam:

- Quizzes will be normally announced at least one day in advance, and may be given in lecture or in tutorial. Quizzes will usually be closed-book (some might be open-book) and will typically require about 10 minutes to complete. A student who misses a quiz for any reason will be assigned a score of zero for that quiz. There will be at least two quizzes throughout the semester.
- Exams will be conducted on schedule announced by department.
- Midterm and terminal exam will be from the syllabus covered in the whole semester.
- The examinations will focus on understanding and applying the concepts taught in class and practiced in lab/tutorial exercises and assignments.

Grading Policy:

As per institution policy

Teaching Methodology:

Class room lectures on whiteboard both, surprise quizzes can be at the start or end of lecture.

Attendance and Assignment Policy:

All students are expected to attend all lectures. Latecomers, coming in class after 10 minutes all be marked absent, must be on time.

Late assignment submission will result in negative marking. Copying will not be tolerated and will be dealt with very seriously.

Note:

Teacher reserves the right to change the lecture schedule, contents and assessment criteria based upon the class situation.

Course Breakup

Week	Topic	Activity
1 st	1. Introduction to Coordination Chemistry	Lectures
	 Introduction to transtation metals Examples of coordination complexes Estimation of Mg⁺² With EDTA 	Practical
	5. Electronic configuration of transtation metal	Lectures
2nd	6. Introduction of Transtation series	
2110	7. Oxidation states of transtation	
1	metals	Practical
	8. Estimation of Ca+2 With EDTA	
3 rd	9. Werner's theory for coordination complexes	Lectures
l	10. Werner's complexes	
l	11. Primary and secondary valences	Practical
1	12. Estimation of Ni+2 with EDTA	Thethear
	13. Introduction to ancient theory of coordination complexes	Lectures
4 th	14. Jorgensen Chain Theory	
l	15. comparison Blomstrand-	
1	Jorgensen Chain Theory with	Practical
l	16. Estimation of Ni+2 with EDTA	
1	(Back Titration).	
5 th	17. Introduction of ligand	
l	18. Classification of ligand	
	19. Examples of various ligands	
	20. □Estimation of Mg+2 and Zn+2 with EDTA (direct Titration	
6 th	21. What is Nomenclature 22. Rules of Nomenclature	Lectures

	 23. Naming of different coordination complexes 24. Estimation of Ca+2 and Zn+2 in a Mixture (Masking).
7 th	25. Introduction to Bonding TheoriesAssignment26. VBT AssumptionsLectures27. Geometry and hybridizationPractical
8 th	28. Estimation of Cd+229. Introduction to CFTLectures30. Orbitals splitting energyLectures31. Estimation of SO4-2 and PO4-3 witPractical
9 th	(Indirect Titration)Mid Term Exam32. Introduction to MOT33. Examples of MOT34. Energy diagrams35. Redox titration
10 th	 36. Structure of coordination compound Quiz 37. Energy diagrams of polyatomic molecules 38. Calculation of bond energy 39. Redox titration
11 th	 40. Chelates and Chelates effect 41. Dissertation in structure 42. Spectrochemical Series 43. Redox titration
12 th	44. Colour of metal complexesLectures45. Magnetic properties46. Isomerism47. Estimation of SO4-2 with EDTAPractical
13 th	47. Estimation of SO4With EDTA48. StereochemistryLectures49. Introduction to pi acceptor ligands50. Introduction to Mono, bi and polynuclear metal carbonyls51. Redox titrationPractical
14th	52. Bonding nature of metal carbonylsLectures53. General properties and reaction of carbonylsLectures54. 18 electron rule applying on metal carbonylsPractical55. Redox titrationPractical
15th	56. Relationlaziion of molecular structureLecturesPractical

	 57. Relationlaziion of molecular structure (Contin) 58. Estimation of PO4⁻³ with EDTA 	
16 th	59. Equation of structure60. Equation of structure(contin)61. Based on spectroscopic evidencEstimation of Iron	Practical
17th	Presentation Presentation Presentation Use of potassium iodate for determination of copper	Practical
18th 19th	Presentation Presentation Presentation Use of potassium iodate for determination of H ₂ O ₂ TERMINAL EXAM	Practical

Signature of Teacher: Chairman:

Dean:_____

Course Title	Biochemistry-II
Course Code	CHM-5604
Credit Hours	4(3-1)
Learning	The course introduces the basic concepts of biocatalysis and enzymes in detail.
objectives	
Contents	Theory
	Biocatalysis and acid-base regulation:
	Body fluids as electrolytes solutions, pH, Henderson-Hesselbalch equation and buffers, Acid
	and bases, amino acids as acids and bases, buffering capacity of amino acids, regulation of acid
	base balance, acidosis, alkalosis, homeostasis, detoxification, circulatory system, and its role to
	maintain body homeostasis.
	Enzymes:
	Chemical nature, nomenclature, and classification of enzymes. Cofactors, substrate specificity,
	enzyme-substrate interaction. Kinetics of single substrate reactions, effect of different factors on
	enzymes activity, enzyme inhibition, regulatory enzymes, allosteric enzymes, multi enzymes
	system, zymogens and isozymes, immobilized enzymes, and their uses.
	Practical
	1. Determination of cholesterol in fluids.
	2. Determination of hemoglobin in the fluids.
	3. Estimation of ascorbic acid in the given sample.
	4. Determination of chloride in fluids.
	5. Determination calcium in fluids.
	6. Determination of total acidity in the given sample
Suggested reading	1. Lehniger, A.L, "Principles of Biochemistry", Worth Publisher, New York, (2001).
	2. Voet, D. and Voit J. G., "Biochemistry", John Wiley & Sons, New York, (2000).
	3. K. K. Pillai, J. S. Qadry, "Biochemistry and Clinical Pathology" CBS Publishers &
	Distributors, 1996.

Teacher	Sig.	Sidra	Avub
1 cucilei	515.	Diala	riyuo

Chairman Sig. -----

Dean Sig -----

Course breakup for BS 6th

Programe		BS	
Semester		6^{th}	
Course Title		Biochemistry-II	
Course Code	CHM-5604	Credit Hours	4(3-1)
No of week		19	
Total no. of lectures		64	
Course Instructor		Sidra Ayub	

Details of lecture/Activities

Week	No o	f Topic of Lecture	Activity
S	Lecture		
1 st	1	Bio catalysis	Lectures and
	2	Body fluids	practical
	3	Body fluids as electrolytes solutions	
	4	Introduction to lab equipment	
2nd	5	рН	Lectures and
	6	Henderson-Hessel Balch equation	practical
	7	Buffers, buffering capacity	
	8	Solution Preparation	
3rd	9	Applications of buffers	Lectures and
	10	Acid and bases	practical
	11	amino acids as acids and bases	
	12	1. Determination of cholesterol in fluids.	
4 th	13	buffering capacity of amino acids	Lectures and
	14	regulation of acid base balance	practical
	15	Maintenance of blood pH	
	16	1. Determination of cholesterol in fluids.	
5 th	17	acidosis, alkalosis.	Lectures and
	18	Disorders of acidosis, alkalosis	practical
	19	Compensatory mechanism of acidosis, alkalosis	
	20	2. Determination of hemoglobin in the fluids.	

6 th	21	homeostasis	
	22	Clinical significance of homeostasis	Quiz I
	23	detoxification	
	24	2. Determination of hemoglobin in the fluids.	
7 th	25	circulatory system	Lectures and
	26	Anatomy of circulatory system	practical
	27	Clinical significance of circulatory system	
	28	3. Estimation of ascorbic acid in the given sample.	
8th	29	Role of circulatory system to maintain body homeostasis	Mid term exam
	30	Role of circulatory system to maintain body homeostasis.	
	31	Mid term exams	
	32	3. Estimation of ascorbic acid in the given sample.	
9th	33	Chemical nature of enzymes	Lectures and
	34	nomenclature of enzymes	practical
	35	classification of enzymes.	
	36	Lab Reports	
10th	37	Cofactors	Lectures and
	38	substrate specificity	practical
	39	enzyme-substrate interaction	
	40	4. Determination calcium in fluids	
	41	Mechanism of Enzyme Action	Quiz II
11 th	42	Enzyme kinetics	
	43	Enzyme kinetics	
	44	5. Determination of chloride in fluids	
12 th	45	Kinetics of single substrate reactions	Lectures and
	46	Kinetics of single substrate reactions	practical
	47	Kinetics of multi substrate reactions	

	effect of different factors on enzymes activityenzyme inhibitionTypes of enzyme inhibition 6. Determination of total acidity in the given sample regulatory enzymes,allosteric enzymesmulti enzymes system, 6. Determination of total acidity in the given sample zymogensisozymesIndustrial applications of enzymesLab Reportsimmobilized enzymes	Lectures and practical
	Types of enzyme inhibition6. Determination of total acidity in the given sampleregulatory enzymes,allosteric enzymesmulti enzymes system,6. Determination of total acidity in the given samplezymogensisozymesIndustrial applications of enzymesLab Reports	Lectures and practical Lectures and Lectures and practical
	 6. Determination of total acidity in the given sample regulatory enzymes, allosteric enzymes multi enzymes system, 6. Determination of total acidity in the given sample zymogens isozymes Industrial applications of enzymes Lab Reports 	Lectures and practical
	regulatory enzymes,allosteric enzymesmulti enzymes system,6. Determination of total acidity in the given samplezymogensisozymesIndustrial applications of enzymesLab Reports	Lectures and practical
	allosteric enzymes multi enzymes system, 6. Determination of total acidity in the given sample zymogens isozymes Industrial applications of enzymes Lab Reports	Lectures and practical
	multi enzymes system, 6. Determination of total acidity in the given sample zymogens isozymes Industrial applications of enzymes Lab Reports	Lectures and practical
· · · · · · · · · · · · · · · · · · ·	6. Determination of total acidity in the given sample zymogens isozymes Industrial applications of enzymes Lab Reports	practical
	zymogens isozymes Industrial applications of enzymes Lab Reports	practical
	isozymes Industrial applications of enzymes Lab Reports	practical
	Industrial applications of enzymes Lab Reports	
	Lab Reports	Lectures and
	-	Lectures and
	immobilized enzymes	Lectures and
	Types of immobilized enzymes	practical
	Uses of immobilized enzymes	
	Revision of practical	
cture	Class presentations	Assignments and
cture	Class presentations	ppts
cture	Class presentations	
actical	Lab quiz	
cture	Class presentations	Assignments and
cture	Class presentations	ppts
cture	Class presentations	
cture	Class presentations	
	Terminal exams	Terminal exams
	cture actical cture cture cture	cture Class presentations actical Lab quiz cture Class presentations cture Class presentations

Signature of teacher_____

Chairman_____

Semester-VIII

Specialization (Inorganic/Organic/ Physical/Biochemistry)	Credit hours
Paper-I	3(3-0)
Paper-II	3(3-0)
Paper-III	3(3-0)
Elective Course –I (Other than the field of specialization)	3(3-0)
Research project/ advanced Practicals	4(0-4)
Total	16

Semester-VIII

Physical Chemistry		
Course code	Course Title	Credit hours
CHM-6801	Quantum Mechanics	3(3-0)
CHM-6802	Colloids and Surfactants	3(3-0)
CHM-6803	Electrochemistry	3(3-0)
CHM-6804	Nuclear and Radiation Chemistry	3(3-0)
CHM-6805	Chemical Thermodynamics	3(3-0)
CHM-6806	Catalysis	3(0-3)
CHM-6807	Computational Chemistry	3(0-3)
CHm-6808	Solid State Chemistry	3(3-0)
CHM-6861	Advanced Practicals in Chemistry	4(0-4)
CHM-6862	OR Thesis	4(as per nature)
Inorganic Chemistr	ry	
CHM-6816	Inorganic Chemistry in Biological systems	3(3-0)
CHM-6817	Chemical Crystallography	3(3-0)
CHM-6818	Inorganic Polymers	3(3-0)
CHM-6819	Basics of Nuclear Chemistry	3(3-0)
CHM-6820	Industrial Chemistry	3(3-0)
CHM-6821	Organometallic Chemistry	3(3-0)
CHM- 6822	Advanced Inorganic Chemistry-III	3(3-0)

CHM-6861	Advanced Practicals in Chemistry	4(0-4)
CHM-6862	OR Thesis	4(as per nature)
Organic Chemistry	7	
CHM-6831	Reaction Mechanism-II	3(3-0)
CHM-6832	Spectroscopy-II	3(3-0)
CHM-6833	Natural Products	3(3-0)
CHM-6834	Introduction to Organic Polymers	3(3-0)
CHM-6835	Pericyclic Reactions and Photochemistry	3(3-0)
CHM-6836	Organic Synthesis-II	3(3-0)
CHM-6837	Special Topics in Organic Chemistry	3(3-0)
CHM-6861	Advanced Practicals in Chemistry	4(0-4)
CHM-6862	OR Thesis	4(as per nature)
Biochemistry		
CHM-6846	Cell biology and cell Biosignaling	3(3-0)
CHM-6847	Microbiology and immunology	3(3-0)
CHM-6848	Nutrition	3(3-0)
CHM-6860	Biochemistry Practicals lab IV	3(3-0)
CHM-6861	Advanced Practicals in Chemistry	4(0-4)
CHM-6862	OR <u>Thesis</u>	4(as per nature)

and Applied Sciences Department of Chemistry UNIVERDALA VA

Course Breakup

	BS
Program	Sth nalvmers
Semester	8 th Intro. to Organic Polymers
Course Title	CHM-6834
Course Code	3(3-0)
Credit Hours	18
No. of Weeks	10
Name of course	
Instructor	

Week	Course contents
1 st week	Course contents Introduction The Origins of Polymer Science and the Polymer Industry. Basic Definitions and Nomenclature. Skeletal Structure Homopolymers Copolymers Monomers, dimers,
	and oligomers.
2 nd Week	Introduction to Types of polymerization reactions Addition polymerization reactions Cationic polymerization and radical polymerization n Anionic polymerization coordination polymerization
3rd Week	iv. Condensation polymerization reactions
	v. Quiz
	vi. Assignment /presentation
4 th Week	General Reactions and Reactivity of Functional Groups. Carothers Equation, Control
	of the Molar Mas Stoichiometric Control of Mn Kinetics Molar Mass Distributio
	in Linear Systems and Average Molar Masses
5 th Week	Step growth and Chain Growth. Termination Steady-State Kinetics High-Conversion
	Bulk Polymerizations
6 th week	Midterm exam
7 th week	Polymerization by carbonyl substitution reactions, Polyamides structure
8th week	Synthesis of carbonyl polymers. Polyesters & Polycarbonates general information
	Synthesis of Polyesters & Polycarbonates general information

1)

)

Anck	i Quiz	
1	ii. Assignment /presentation	
10ª week	Polymerization by electrophilic aromatic substitution. Chain growth.	
11 ^{sh} week	Polymerization by nucleophilic attack on isocyanates. Polymerization of alkenes. Anionic polymerization is multiple conjugate addition	
12 th week	Cationic polymerization requires stabilized carbocations. Ziegler-Natta polymerization. Ziegler-Natta polymerization applications	
13 th week	Mass Spectra of Polymers. Methods of Soft Ionization for Polymers Electrospray Ionization. Matrix-Assisted Laser Desorption/Ionization	
14 th week	Chemical Composition and Molecular Microstructure. Itroduction Principles of Spectroscopy. Uses of Electromagnetic Radiation in Polymer Science The Beer I ambert Law for Absorption of Electromagnetic Radiation. Ultraviolet and Visible cagate Ausorption Spectroscopy applications of Oxives Spectroscopy in consider Science	
15 th week	Applications of IR Spectroscopy in Polymer Science Practical Aspects of Spectroscopy. Analysis of Molecular Structure and Composition by NMR Spectroscopy Analysis of End Groups and Branch Points by NMR Spectroscopy	
16 th week	Determination of Molecular Microstructure by NMR Spectroscopy Determination of Tacticity Determination of Repeat Unit Sequence Distributions in Copolymers Other Uses of NMR Spectroscopy in Polymer Science mPractical Aspects of NMR	
	Spectroscopy	

)

11

Recommended Books

Young, R., & Lovell, P.A., Introduction to Polymers, Chapman & Hall Publishers, UK.
 Cowie, J.M.G., Polymers Chemistry and Physics of Modern Materials, Billing & Sons Ltd. UK.

•.

CS CamScanner

- -

University of Poonch, Rawalakot Department of Chemistry

Course Breakup for affiliated colleges Course Title: Pericyclic Reactions and Photochemistry Course Code:CHM-6835 Program: BS (8th) Section: Organic

62	Corse Contents		
Weeks	tor midterm		
Course c	Introduction to pericycylic reraction types		
15	Introduction to pericycline Cycloaddition reaction with examples		
2 nd	Introduction to perception Cycloaddition reaction with examples Strereochemistry of reactants and products with examples		
3'd	Strereochemistry of reasons		
4 th	Electrcyclic reaations		
5 th	Electrcyclic reaations Stereochemistry of cycladdition ractions		
cth	Practice with discusion		
Course CO	ntent for Terminal		
7 th	Detail study of sigmatropic reactions		
Bit	Symmetry orbital and content of Euklis theory		
9 th	Symmetry orbital and correlation of the Symmetry orbital and correlation of the Symmetry Woodward Hoffmann Theory and Fuki's theory Introduction to photochemistry and Ist and 2 nd law		
10 th	Introduction to photochemistry		
1111	Quantum yield yield		
217	Norish type one and norish type in Need		
2 3 th			
4 th	Jablonski diagram Phosphoresnce and flouresence discussion		
5th	Presentations		
jth	Presentations		

Ì

ł

University of Poonch Rawalakot Department of Chemistry Course Breakup for affiliated colleges Course Title: Spectroscopy-II Course Code: CHM-6832

Program: BS (8th)

Neeks	Section: Organic		
	Corse Contents		
course co	ntent for midterm		
l _{at}	Chemical Shift of aromatic substituted compounds i.e (1,2,3)		
Z nd	substituted Benzene Rings.		
2.~~	Diamagnetic shielding/Anisotropic effect of alkenes, alkynes and aromatic compounds.		
3rd	I.R of Alkanes, Alkenes and Alkynes		
4 th	Carbonyl Compounds		
5 th	Aldehydes Ketones carboxylic acid and esters and Mclefferty		
6 th	rearrangement. U.V of conjugated and non-conjugated Alkenes Alkynes		
Course c	ontent for Terminal		
7 th	Mass Fragmentation of Alkanes/Alkenes		
8 th	Alcohols ethers and amines effects		
9 th	Structure with U.V and I.R combined		
10 th	Identifying and Comparing similar Structures by H-NMR (Cont)		
11 th	Identifying and Comparing similar Structures by H-NMR		
12 th	C ¹³ introduction and chemical shifts		
13 th	C ¹³ of various functional groups		
14 th	Structural elucidation by combined spectroscopic techniques. Alkanes from Mass 15-60		
15 th	Structural elucidation by combined spectroscopic techniques. Alcohols and ethers		
16 th	Structural elucidation by combined spectroscopic techniques. Aromatic compounds		

CS CamScanner

UNIVERSITY OF POONCH RAWALAKOT Department of Chemistry Course breakup Course Title: Biochemistry-II = (Al Biology) = Birs Course Code: CHM-5604 Credit Hours: 4 (3-1) BS- VI

reks	Course content	
u	Cell Hology	
A THE	Introduction to cell theory	Mid tera
44	Introduction to cell structure	
114	Chemical composition, structure and function of cell organelles	
314	Chemical composition, structure and function of cell organelles	
313	Structure and function of nucleus, quize	
614	Chromosomes, genes	
	Cell cycle, mitoșis	Terminal
Ser	Meiosis and cytokinesis	pertion
QIA	Transportation through plasma memebrane	
1044	Glucose transport channels	
11.4	Blosignaling Cell signal transduction	
12**	Insulin signaling pathway	
1318	Disruption of insulin signaling during insulin resistance and diabetes	
1415	Disruption of insulin signaling during insulin resistance and diabetes	
151	Leptin signaling to regulate food intake/ appetite	4
16 th	Disruption of leptin signaling in obesity and leptin resistance	

Department of Chemistry Course Breakup

Course Title	Advanced practical's in Chemistry
Course Code	CHM-6861
Credit Hours	4(0-4)
Contents	 Preparation of Maritus Yellow Synthesis of 5,5-diphenylhydantion Preparation of benzoic acid Preparation of carboxylic acid hydrazide Preparation of n-butyl chloride Preparation of 2-iodobenzoic acid Prepartion of 2,4-dinitrophenylhydrazone Protection of functional group OH group
Suggested reading	 Furniss, B.S., Hannaford, A.J., Smith, P.N.G., & Taldull,, A.R., Vogels Textbook of Practical Organic Chemistry, 5 th Ed., Longman Scientific & Technical, London, 1989. Adams, R., Johnson, J.R., & Wilcox Jr., Laboratory Experiments
	in Organic Chemistry,

Programme	BS			
Semester	8th			
Course Title Advanced practicals in Chemistry				
Course Code	CHM-6861	Credit Hours	4(0-4)	
No of week	19			
Course Instructor	Shabana Siddique			

Course Breakup

Weeks	Course Contents
1 st	Introdution to lab. and instrutions about preparation of Maritus
	yellow
2 nd	Performance for Maritus Yellow
3 rd	Instruction of synthesis of 5,5-diphenyle hydention
4 th	Performanace
5 th	Preparation of benzoic acid
6 th	Preperation of carboxylic acid hydrazide
7 th	Preperation of n -butyl chloride
8 th	Preperation of 2- iodobenzoic acid
9 th	Quiz and assignment
10 th	Preperation of 2,4-dinitrophenylhydrazone
11 th	Preperation of 2,4-dinitrophenylhydrazone
12 th	Instruction about protection of functional group
13 th	Performance for the protection of OH group
14 th	Performance for the protection of OH group
15 th	Presentations
16 ^{th-19}	Revision